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Retrieval of transverse relaxation time distribution
from spin-echo data by recurrent neural network
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Abstract

Inversion of transverse relaxation time decay curve from spin-echo experiments was carried out using Hopfield neural network,
to obtain the transverse relaxation time distribution. The performance of this approach was tested against simulated and experimen-
tal data. The initial guess, necessary for the integration procedure, was established as the analytical Laplace inversion. Together with
errors in the simulated data, inversion was also carried out with errors in this initial guess. The probability density function, calcu-
lated by the neural network, is used in multiple sclerosis diagnostics.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The first spin-echo experiment was carried out by
Hahn in 1949 [1,2], just after the nuclear magnetic reso-
nance discovery. Inherent imperfections of the applied
magnetic field, together with different nuclear magneti-
zation at each infinitesimal volume element, imply a ra-
pid decay of the free induction signal [3]. To circumvent
this situation, multiple refocusing pulses can be applied,
resulting in a train of spin echoes. This will enable the
measurement of the spin–spin relaxation time. The time
evolution of the nuclear magnetization, when the free
motion is perturbed by two successive pulses, is called
the Hahn echo phenomena.

The intensity of the peak in each spin-echo time can
be used to calculate the transverse relaxation time by,
for example, fitting the data to the smallest number of
discrete exponential terms. This will produce a set of
number, usually tabulated as the T2 values. In the pres-
ent work the spin-echo data will be used to recover, not
1090-7807/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2005.07.017

* Corresponding author.
E-mail address: jpbraga@oxigenio.qui.ufmg.br (J.P. Braga).
only individual values of the relaxation time, but its dis-
tribution density function. This will provide useful infor-
mation for the experimentalist, for this distribution can
give important chemical information.

Quantitative interpretation of nuclear magnetic reso-
nance data has been performed in [4–6] using the non-
negative least square with constraints method and, also,
using the Contin package [7]. In both these cases, the
regularization parameter has to be determined. The
non-negative least square with extra condition is, in fact,
equivalent to the Tikhonov regularization [8] and the
procedure to determine the free parameter has been dis-
cussed in [9].

Recovering the transverse relaxation time distribu-
tion from spin-echo data is, in fact, a problem known
as ill-posed. The usage of recurrent neural network
[10] has proved to be a powerful method to handle this
kind of problem and has been applied to other situations
in chemistry [11,12]. This approach is to be tested with
simulated and experimental data for retrieving the trans-
verse relaxation time distribution. Experimental data
will be taken from magnetic resonance images in multi-
ple sclerosis (MS) tissues [13].
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2. Inverse problem and the spin-echo phenomena

Relaxation of the gyroscopic motion was defined by
Bloch [14] in 1946 with the parameters T1 and T2

dM

dt
¼ cðM� BÞ �Mx~iþMy~j

T 2

� ðMz �M0Þ~k
T 1

ð1Þ

with M being the total magnetization vector, M0 the
equilibrium magnetization, and B the total magnetic
field vector. This equation can be solved as a function
of time for the transverse relaxation,

Mxy ¼ M0 exp
�t
T 2

� �
. ð2Þ

In the same volume element there is no variation of the
applied field intensity and the above equation is correct.
Nevertheless, due to the spatial inhomogeneity, neigh-
boring elements experiment slightly different applied
fields and an important modification would be to intro-
duce multiple T2 components, resulting in a transverse
magnetization equation [13,15]

Mxy ¼
X

PðkiÞ expð�tkiÞ ð3Þ

with ðki ¼ 1=T ðiÞ
2 Þ the rate constant for each process and

P (ki) its corresponding probability. Considering a con-
tinuous distribution of transverse relaxation time and
the probability density function f (k) = P (k)/Dk [12],
Eq. (3) can be re-written as,Z b

a
Kðt; kÞf ðkÞdk ¼ gðtÞ ð4Þ

in which g (t) is the signal intensity, measured at echo
time t and K (t,k) = exp(�tk) is the kernel of the
transformation.

Eq. (4) is a Fredholm integral equation of first kind
[16] which, in general terms, can be interpreted as f (k)
being an input, K (t,k) being an apparatus, and g (t) an
output. For a given K (t,k) and f (k) calculation of g (t)
is a simple problem, the direct problem. On the other
hand, calculation of f (k) from K (t,k) and g (t) is a much
more complicated problem, being the inverse problem.
Within a representation for the Fredholm integral equa-
tion, Kf = g will be established, with f 2 Rn, g 2 Rm and
K 2 Rm·n. In this framework, one can define an ill-posed
problem as a problem in which one of the three
conditions

1. for every f 2 Rn there exist a g 2 Rm such that Kf = g;
2. the solution of the problem, f, is unique in Rn; and
3. the dependence of f with g is continuous;

is not satisfied [17]. Therefore, retrieval of transverse
relaxation time distribution from spin-echo data is an
ill-posed problem and requires special techniques for
its solution. The two most popular techniques to solve
an inverse ill-posed problem are the Tikhonov regulari-
zation [8] and the singular value decomposition method
[12,18]. A third method, the Hopfield recurrent neural
network, proves to be more powerful than these two
methods.
3. Hopfield neural network

The Hopfield neural network is a single recurrent
layer network with logic units fully connected. The state
of the neurons, ui, is calculated by an activation function
formed by the weighted sum of all its inputs [10,11].
Increasing functions of the state of the neurons, i.e.,
of/ou > 0, has to be chosen as transfer functions to sat-
isfy the nervous impulse model [10].

Within this approach one may define an energy
function,

E ¼ 1

2

Xm
j¼1

e2j ¼
1

2

Xm
j¼1

Xn
i¼1

Kijfi

 !
� gj

 !2

ð5Þ

with ej ¼ ð
P

iKijfiÞ � gj, fi = / (ui (t)), n the number of
points used to represent Eq. (4) and m, the number of
available data. Considering this energy function, the sta-
ble state f = [f1f2� � �fn] that minimizes kKf � gk22 is
reached since the Hamiltonian relation

dui
dt

¼ � oE
ofi

ð6Þ

is imposed. In this way, the time evolution of the out-
puts of the neurons is given by

dui
dt

¼
Xn
j¼1

T ijfj þ I i ð7Þ

with T ij ¼ �
Pn

l¼1KliKlj ¼ T ji and I i ¼
Pn

j¼1Kjigj.
This equation was integrated by a Runge–Kutta–

Fehlberg method [19] until an establishment of the equi-
librium, which corresponds to a solution f of the prob-
lem. The multiple solution character of the ill-posed
problem can be observed along the integration. If the
output error is within the experimental error, the exper-
imentalist can decide the right solution, based, for exam-
ple, on the relative areas and position of the
components.
4. Multiple sclerosis background

Multiple sclerosis is a brain disease characterized by
an abrupt onset of neurological symptoms [13,20,21].
The disease process starts with the lymphocytes attack-
ing the myelin sheath around the axons in the white mat-
ter. The bilayer myelin sheath is composed principally of
lipids and other support proteins. The stages of MS le-
sions mainly occur with, at first, the breaking down of
the blood–brain barrier and entering of lymphocytes
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Fig. 1. Experimental (s) and simulated (full line) data for multi-spin-
echo experiment.
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into the extra cellular space resulting in an inflamma-
tion. Then, inflammation is decreased and there is signif-
icant loss of myelin and oligodendrocytes.

Contrast mechanism in magnetic resonance of images
can be used to detect the inflammation in MS lesions.
Therefore, a train of multiple spin-echo images can dis-
tinguish more completely MS lesions from the normal
white matter using the T2 relaxation properties [4,5].
The spins enclosed by the tissues present an effective
spin–spin interaction and dephase faster (T2 � tens of
milliseconds), because each isochromat is affected by
the local magnetic field of the neighboring spins. On
the other hand, variations in local magnetic field of
the freely moving spins decreases the spin–spin interac-
tion importance, with a relatively slower dephasing
(T2 � seconds) [22]. Therefore, the water in tissues with
MS lesions has intrinsic increased transverse relaxation
times in comparison with the surrounding white matter
[5]. This information is important to quantify the distri-
bution function obtained by the inversion procedure.
Table 1
Parameters for the density function, Eq. (8)

Variables Values

A1 850
A2 150
a1 1/120 ms�1

a2 1/30 ms�1
5. Results and discussion

5.1. Analysis with simulated data

The signal intensity, g (t), measured at echoes time, t,
can be expressed by the Laplace transform of the prob-
ability density function, f (k), as in Eq. (4). The first part
of this work was performed using simulated data to ver-
ify the efficiency of the method. To represent the exper-
imental T2 decay curve [13], a bi-exponential function
was proposed as a model,

gðtÞ ¼
X2
i¼1

Ai expð�aitÞ. ð8Þ

The constant Ai was determined by the amplitude of the
T2 decay curve and ai as the rate constant for each compo-
nent. Normalized simulated data are in fair agreement
with the published data [13]. The result is presented in
Fig. 1 and the necessary constants in Table 1.

To calculate the T2 distribution one can try to find
the inverse matrix K�1, if the number of available data
coincides with the representation size. However, K is
an ill-conditioned matrix resulting in an inverse with
large values compared with the original values of K.
Any small error in the data is sufficient to amplify the
solution, if it is computed as K�1g. This non-continuity
in the data with respect to the solution is sufficient to
classify the inversion of data in spin-echo experiments
as an ill-posed problem.

The system of differential equations, Eq. (7), requires
an initial condition to be solved. The quality of this ini-
tial condition is an important aspect of the neural net-
work procedure and is responsible for better results
with less computational time. In this sense, the f (k)
function for initial guess, used for the simulated and
experimental data, was calculated by the inverse Laplace
transform [23,24],

f ðkÞ ¼ lim
k!1

X2
i¼1

ð�1Þ2k

k!
aki Ai expð�aik=kÞ

k
k

� �kþ1
 !

.

ð9Þ

The constants Ai and ai are the same as in Eq. (8)
whereas k is the inverse of the transverse relaxation time.
Numerical integration of the direct problem, with
k = 30 in Eq. (9), was performed generating synthetic
data with seven significant figures.

The matrix of Kf = g problem was calculated in a
rectangular representation [25] with n = 32 and 16
experimental points. This base size was tested analyzing
if the residual error kKf � gk22 is within the experimental
error. The total of eight significant figures was reached.

Two important properties of the recurrent neural net-
work have to be emphasized at this point. One is related
with the decreasing character of the energy function.
For any initial condition dE

dt < 0, that is, the final result
will always be better than the initial guess. The second
property refers to the initial condition. If the initial guess
is the exact solution, dui

dt ¼ 0, a result which can be seen
from Eq. (6). These two properties were tested numeri-
cally and the recovered result from Eq. (9) as initial
guess is presented in Fig. 2.
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Errors up to 30% were considered in the initial guess.
This was achieved by multiplying the initial guess by a
factor. For all these situations, summarized in Table 2,
the neural network presents two peaks with residual er-
ror smaller than the one in the initial guess.

Another analysis was made including 20% of error in
the simulated data of the T2 decay curve, presented also
in Table 2. In this case, despite the solution presents neg-
ative values, the two peaks could also be recovered. At
this point it is important to emphasize the solution ob-
tained by the recurrent neural network has a smaller
residual error when compared with the initial guess. Ta-
ble 2 exemplifies the decreasing energy property of the
present approach for the considered cases.
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Fig. 2. Initial inverse Laplace guess (full line) and converged neuron
states (s) for simulated data.

Table 2
Inverse Laplace transform and neural network residual errors

Inverse Laplace
transform error
kKf � gk22

Initial guess
(%)

Neural
network error
kKV� gk22

Simulated data

1.456(�8) 0 1.946(�12)
10 3.866(�12)
20 5.166(�12)
30 6.717(�12)

20% percentual error in simulated data

2.5559(�6) 0 2.261(�6)
10 2.261(�6)
20 2.261(�6)
30 2.261(�6)

Experimental data

3.151(�8) 0 5.026(�9)
10 5.039(�9)
20 5.046(�9)
30 5.053(�9)

The function f is the solution from the inverse Laplace transform
method and V is the neural network response. Number in parenthesis
are for power of 10.
5.2. Inversion of experimental data

Considering experimental data and the inverse
Laplace transform function, Eq. (9), as initial guess,
the neural network approach recovers an excellent
transverse relaxation time distribution, as in Fig. 3. In
this case errors up to 30% were also added in the initial
guess, resulting a T2 time distribution retrieval with two
peaks, although, in some case, negative values can also
be presented. To avoid these negative values, an appro-
priated filter can be used while treating with experimen-
tal data [26,27].

A sensitivity analysis of the neural network perfor-
mance, with respect to the amplitude and rate constant,
was carried out. The inverted results are not sensitive to
the amplitudes. Although the neural network is sensitive
to variations in the rate constant, a variation of 10% in
this parameter gives tolerable results, as shown in Fig. 4.
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Fig. 3. The same as in Fig. 2 using experimental data.
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Fig. 4. Converged states of the neurons (s), using experimental data.
The initial guess given to the network (full line), with 10% error in each
of the parameters Ai and ai (i = 1,2) in Eq. (9).
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From the previous discussion it is clear that, although
the solution using the inverse Laplace might contain the
decaying rates and is a good initial guess, it can be con-
siderable improved by using the recurrent neural net-
work. This can be used to characterize and quantify,
throughout the peak areas, a MS lesion tissue.

Integration of Eq. (7) was interrupted at a point in
which the residual error kKV� gk22, with V being the
neural network response, reaches a desired tolerance.
This was achieved, in average, for the maximum integra-
tion time of about 108 units.

5.3. Testing the initial condition

The previous results, based on the inverse Laplace
transform as initial guess, is not taken to imply this con-
stitutes a bias in the present method. To explore the
robustness of the present approach the number of expo-
nential in the initial condition will be given in such a way
that it will not correspond to the number of exponential
in the model function. Different initial conditions, with
one and three exponentials, will be used to investigate
the response of the neural network in these situations.

The converged solution, for an initial guess consisting
only of the first exponential in the model function, is giv-
en in Fig. 5. Considering simulated data, the residual er-
ror was kKV� gk22 ¼ 2.999� 10�12. Even with this
initial guess, the neural network was able to identify
the second peak in the density distribution function.
The same arguments are valid if the experimental data
are used. In this case kKV � gk22 ¼ 5.034� 10�9.

A third exponential was added to the previous inverse
Laplace transform function with two exponential. This
new exponential has a smaller intensity with respect to
the second peak and is located to the right, with a rate
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Fig. 5. Converged states of the neurons using simulated data. The
initial guess given to the network has only the first exponential of Eq.
(9). The solid line represents the initial guess and the circles the
network response.
of 50 ms. As before, the results gives the two peaks in
the right position, a result similar to the one presented
in Fig. 5. In this case the residual error is also small,
kKV� gk22 ¼ 3.041� 10�12 and kKV� gk22 ¼ 5.034 �
10�9 for the simulated and experimental data, respectively.
6. Conclusions

The inversion of multi-spin-echo experiment is an ill-
posed problem, requiring some special techniques for its
numerical treatment. The recurrent Hopfield neural net-
work was chosen and the inversion procedure investigat-
ed with simulated and experimental data. The efficiency
of the method was analyzed introducing errors and
varying parameters in the initial guess.

The inverse Laplace transform as initial guess proved
to be useful in the both case, with simulated and exper-
imental data. The recurrent neural network, due to its
property of decreasing energy, will improve the initial
condition, generating a distribution function with lower
residual error. For a initial guess, given by the inverse
Laplace transform with a set of reasonable parameters,
already known to MS lesions [13,15,22], the neural net-
work will provide a distribution from the experimental
data. The position and relative areas of the peaks can
be analyzed quantitatively to MS lesion diagnostics.

The usage of the recurrent neural network for ill-
posed problem is attractive for its efficiency and simplic-
ity. The theory and numerical background requires only
elementary concepts. For example, to understand basic
equations, as Eq. (7), only simple concepts of calculus
need to be introduced. Also, the computer code devel-
oped is very short. Except from the integration routine,
the code has about 100 lines and is very simple to use.
The methodology used here is not restricted to linear
problems and has been extended also to non-linear
problems [11]. Therefore, effects of non-linearity in mag-
netic resonance are possible to be studied by the recur-
rent neural network.
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